skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Criswell, Alexander W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The Laser Interferometer Space Antenna (LISA) is expected to detect a wide variety of gravitational wave sources in the mHz band. Some of these signals will elude individual detection, instead contributing as confusion noise to one of several stochastic gravitational-wave backgrounds (SGWBs) – notably including the ‘Galactic foreground’, a loud signal resulting from the superposition of millions of unresolved double white dwarf binaries (DWDs) in the Milky Way. It is possible that similar, weaker SGWBs will be detectable from other DWD populations in the local Universe, including the Large Magellanic Cloud (LMC). We use the Bayesian LISA Inference Package (blip) to investigate the possibility of an anisotropic SGWB generated by unresolved DWDs in the LMC. To do so, we compute the LMC SGWB from a realistic DWD population generated via binary population synthesis, simulate 4 years of time-domain data with blip comprised of stochastic contributions from the LMC SGWB and the LISA detector noise, and analyse this data with blip’s spherical harmonic anisotropic SGWB search. We also consider the case of spectral separation from the Galactic foreground. We present the results of these analyses and show, for the first time, that the unresolved DWDs in the LMC will comprise a significant SGWB for LISA. 
    more » « less